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1 Systems of linear equations (5 + 1 + 5 + 2 + 2 + 5 + 5 = 25 pts)

Consider the cubic polynomial
p(x) = q + rx+ sx2 + tx3

where q, r, s, t ∈ F.

(a) Find a system of linear equations in the unknowns q, r, s, t such that

p(1) = p′(1) = 4, p(2) = 14, and p′(2) = 17.

(b) Write down the corresponding augmented matrix.

(c) By performing elementary row operations, put the augmented matrix into row echelon form.

(d) Determine whether the system is consistent.

(e) Determine the lead and free variables.

(f) Put the augmented matrix into reduced row echelon form.

(g) Find the solution set.

Required Knowledge: Gauss-Jordan elimination, row operations, reduced row
echelon form, notions of lead/free variables.

Solution:

1a: Note that p′(x) = r + 2sx+ 3tx2 and

p(1) = 4 = q + r + s+ t

p′(1) = 4 = r + 2s+ 3t

p(2) = 14 = q + 2r + 4s+ 8t

p′(2) = 17 = r + 4s+ 12t.

1b: Then, the augmented matrix is given by
1 1 1 1 4
0 1 2 3 4
1 2 4 8 14
0 1 4 12 17


1c: To put the augmented matrix into row echelon form, we apply elementary row operations:

1 1 1 1 4
0 1 2 3 4
1 2 4 8 14
0 1 4 12 17

 2 ← 2 − 1 · 1
−−−−−−−−−−−−−→


1 1 1 1 4
0 1 2 3 4
0 1 3 7 10
0 1 4 12 17




1 1 1 1 4
0 1 2 3 4
0 1 3 7 10
0 1 4 12 17


3 ← 3 − 1 · 2
4 ← 4 − 1 · 2
−−−−−−−−−−−−−→


1 1 1 1 4
0 1 2 3 4
0 0 1 4 6
0 0 2 9 13






1 1 1 1 4
0 1 2 3 4
0 0 1 4 6
0 0 2 9 13

 4 ← 4 − 2 · 3
−−−−−−−−−−−−−→


1 1 1 1 4
0 1 2 3 4
0 0 1 4 6
0 0 0 1 1


The last matrix is in the row echelon form.

1d: From (1c), we see that the last column of the row echelon form does not have a leading 1,
therefore the system is consistent.

1e: All unknowns are lead variables. There are no free variables.

1f: To obtain the row reduced echelon form, we continue applying elementary row operations:


1 1 1 1 4
0 1 2 3 4
0 0 1 4 6
0 0 0 1 1


3 ← 3 − 4 · 4
2 ← 2 − 3 · 4
1 ← 1 − 1 · 4
−−−−−−−−−−−−−→


1 1 1 0 3
0 1 2 0 1
0 0 1 0 2
0 0 0 1 1




1 1 1 0 3
0 1 2 0 1
0 0 1 0 2
0 0 0 1 1


2 ← 2 − 2 · 3
1 ← 1 − 1 · 3
−−−−−−−−−−−−−→


1 1 0 0 1
0 1 0 0 −3
0 0 1 0 2
0 0 0 1 1




1 1 0 0 1
0 1 0 0 −3
0 0 1 0 2
0 0 0 1 1

 1 ← 1 − 1 · 2
−−−−−−−−−−−−−→


1 0 0 0 4
0 1 0 0 −3
0 0 1 0 2
0 0 0 1 1


1g: The unique solution is q = 4, r = −3, s = 2, and t = 1, that is there is a unique polynomial

p(x) = 4− 3x+ 2x2 + x3

satisfying the conditions.



2 Partitioned matrices (10 + 10 = 20 pts)

Let A be n× n matrix. Let

M =

[
In A
A In

]
.

(a) Show that M is nonsingular if and only if both In −A and In +A are nonsingular.

(b) Suppose that both In −A and In +A are nonsingular. Find the inverse of M .

Required Knowledge: Partitioned matrices and nonsingularity.

Solution:

2a: For the ‘if’ part, suppose that both In − A and In + A are nonsingular. Let x,y be
n-vectors satisfying

02n = M

[
x
y

]
=

[
In A
A In

] [
x
y

]
.

This leads to
x+Ay = 0n and Ax+ y = 0n.

Then, we have (In −A2)y = 0n. Since (In −A2) = (In −A)(In +A) and product of nonsingular
matrices are nonsingular, we see that (In − A2) is nonsingular. Therefore, we obtain y = 0n. It,
then, follows from x+Ay = 0n that x = 0n. Consequently, M is nonsingular.

For the ‘only if’ part, suppose thatM is nonsingular. Let x be an n-vector such that (In−A)x =
0n. Note that

M

[
x
−x

]
=

[
(In −A)x
−(In −A)x

]
= 02n.

Since M is nonsingular, we can conclude that x must be zero. Therefore, we see that In − A is
nonsingular. Now, let x be an n-vector such that (In +A)x = 0n. Note that

M

[
x
−x

]
=

[
(In +A)x
(In +A)x

]
= 02n.

Since M is nonsingular, we can conclude that x must be zero. Therefore, we see that In + A is
nonsingular.

2b: From (2a), we know that M is nonsingular. Let U, V,W,X be n× n matrices and[
U V
W X

]
be the inverse of M . Then, we have[

In A
A In

] [
U V
W X

]
= I2n.

In other words, we have [
U +AW V +AX
AU +W AV +X

]
=

[
In 0
0 In

]
.

By solving V and W from the off-diagonal blocks, we obtain V = −AX and W = −AU . From
the diagonal blocks, we see that (In − A2)U = In and (In − A2)X = In. Since (In − A2) =



(In−A)(In +A), (In−A2) is nonsingular. Let B = (In−A2)−1. Then, we have U = X = B and
V = W = −AB. As such,

M−1 =

[
(In −A2)−1 −A(In −A2)−1

−A(In −A2)−1 (In −A2)−1

]
.



3 Eigenvalues and eigenvectors (2 + 15 + 3 = 20 pts)

Let A ∈ Fm×n and B ∈ Fn×m.

(a) How many rows and columns do the matrices AB and BA have?

(b) Show that the nonzero eigenvalues of AB and BA are the same.

(c) Find A and B such that AB is nonsingular and BA is singular. (Take m = 1 and n = 2)

Required Knowledge:Matrix multiplication, eigenvalues/eigenvectors, and (non)singularity.

Solution:

3a: The matrix AB is m×m and BA is n× n.

3b: Because of symmetry, it is enough to show that every nonzero eigenvalue of AB is also an
eigenvalue of BA. Let (λ,x) be an eigenpair of AB such that λ ̸= 0. This means that

ABx = λx. (1)

Now, multiply both sides from left by B:

BABx = λBx.

This shows that (BA)(Bx) = λ(Bx). Since λ ̸= 0 by assumption and x is a nonzero vector as an
eigenvector, we see from (1) that Bx must be nonzero. Therefore, λ is an eigenvalue of BA.
3c: Take

A =
[
1 0

]
and B =

[
1
0

]
and observe that

AB = 1 and BA =

[
1 0
0 0

]
.

Clearly, AB is nonsingular. Observe that det(BA) = 0 as BA has a zero row. So, it is singular.



4 Determinants and diagonalization (3 + 5 + (2 + 15) = 25 pts)

Let M(n) ∈ Rn×n be given by

[M(n)]ij =


a if i = j

b if i = j + 1

c if i = j − 1

0 otherwise.

For instance,

M(4) =


a c 0 0
b a c 0
0 b a c
0 0 b a

 .

(a) Compute the determinant of M(n) for n ∈ {1, 2, 3}.

(b) Let d(n) = detM(n). Find real numbers x, y such that

d(n) = xd(n− 1) + yd(n− 2)

for all n ⩾ 3.

(c) Take a = 5, b = c = 2.

(i) Let e(n) =

[
d(n− 1)
d(n− 2)

]
. Find a matrix A such that

e(n+ 1) = Ae(n)

for all n ⩾ 3.

(ii) Diagonalize A, compute An, and find d(n).

Required Knowledge: Nonsingularity and partitioned matrices.

Solution:

4a: Note that

M(1) = a, M(2) =

[
a c
b a

]
, and M(3) =

a c 0
b a c
0 b a

 .

Then, we have

detM(1) = a

detM(2) = a2 − bc

detM(3) = a det

([
a c
b a

])
− cdet

([
b c
0 a

])
= a(a2 − bc)− abc = a3 − 2abc.

4b: Let n ⩾ 3. By cofactor expansion along row 1, we have that

d(n) = ad(n− 1)− cdet

([
b q

0n−2,1 M(n− 2)

])



where q is an n− 1-row vector. By cofactor expansion along column 1, wee see that

det

([
b q

0n−2,1 M(n− 2)

])
= bd(n− 2).

Therefore, we obtain
d(n) = ad(n− 1)− bcd(n− 2)

for all n ⩾ 3. As such, x = a and y = −bc.
4c(i): For a = 5 and b = c = 2. We have

d(n) = 5d(n− 1)− 4d(n− 2)

for n ⩾ 3. Therefore, we see that

e(n+ 1) =

[
d(n)

d(n− 1)

]
=

[
5 −4
1 0

] [
d(n− 1)
d(n− 2)

]
=

[
5 −4
1 0

]
e(n).

Hence,

A =

[
5 −4
1 0

]
.

4c(ii): To diagonalize A, we begin with finding its characteristic polynomial:

pA(λ) = det(λI −A) = det

([
λ− 5 4
−1 λ

])
= λ(λ− 5) + 4 = λ2 − 5λ+ 4.

Then, we see that the eigenvalues are λ1 = 1 and λ2 = 4. Next, we find eigenvectors by noting
that

0 = (λ1I −A)x =

[
−4 4
−1 1

] [
x1

x2

]
⇐⇒ x1 = x2

and that

0 = (λ2I −A)y =

[
−1 4
−1 4

] [
y1
y2

]
⇐⇒ y1 = 4y2.

Therefore, we can choose

[
1
1

]
as an eigenvector corresponding to λ1 and

[
4
1

]
corresponding to λ2.

Now, let

X =

[
1 4
1 1

]
and note that

AX =

[
5 −4
1 0

] [
1 4
1 1

]
=

[
1 4
1 1

] [
1 0
0 4

]
= XD

where D is a diagonal matrix. Since

X−1 = −1

3

[
1 −4
−1 1

]
,

we see that

An = XDnX−1 = −1

3

[
1 4
1 1

] [
1 0
0 4n

] [
1 −4
−1 1

]
= −1

3

[
1 4n+1

1 4n

] [
1 −4
−1 1

]
= −1

3

[
1− 4n+1 4n+1 − 4
1− 4n 4n − 4

]
.

Now, observe that
d(n) =

[
1 0

]
e(n+ 1) =

[
1 0

]
An−2e(3)

and

e(3) =

[
d(2)
d(1)

]
=

[
a2 − bc

a

]
=

[
21
5

]
.

Therefore, we see that

d(n) = −1

3

[
1 0

] [1− 4n−1 4n−1 − 4
1− 4n−2 4n−2 − 4

] [
21
5

]
= −1

3

[
1− 4n−1 4n−1 − 4

] [21
5

]
=

4n+1 − 1

3
.


